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Abstract. Polarization properties of strange baryons produced in pp reactions, p + p → p + Λ0 + K+ and
p + p → p + Σ0 + K+, near thresholds of the final states pΛ0K+ and pΣ0K+ are analysed relative to
polarizations of colliding protons. The cross-sections for pp reactions are calculated within the effective
Lagrangian approach accounting for strong pp rescattering in the initial state of colliding protons with
a dominant contribution of the one-pion exchange and strong final-state interaction of daughter hadrons
(Eur. Phys. J. A 9, 425 (2000)).

PACS. 11.10.Cd Axiomatic approach – 25.40.-h Nucleon-induced reactions – 13.88.+e Polarization in
interactions and scattering – 14.20.Jn Hyperons

1 Introduction

Recently [1] we have considered a production of
strangeness in pp reactions, p + p → p + Y + K+, where
Y = Λ0 or Σ0, near thresholds of daughter hadrons. We
have derived the effective Lagrangian

Lpp→pYK+
(x) =

i
1
4

CpYK+ ϕ†
K+(x) {[p̄(x)γ5Y c(x)][p̄c(x)p(x)]

+[p̄(x)Y c(x)][p̄c(x)γ5p(x)]
+[p̄(x)γµY c(x)][p̄c(x)γµγ5p(x)]}, (1.1)

describing the effective vertex of the transition
p + p → Y + K+ + p, where p(x), Y (x) and ϕK+(x)
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are the interpolating operators of the proton, hyperon
and K+-meson fields, the index (c) stands for a charge
conjugation. The first and the last two terms in the
Lagrangian equation (1.1) describe the pY-pair coupled
in the spin singlet, S = 0, and spin triplet state, S = 1,
respectively. The coupling constant CpYK+ has been
calculated in ref. [1] and reads

CpYK+ =
gpYK+g2

πNN

Mp+MY+MK+

1
M2

π +2Mp(E�p−Mp)
, (1.2)

where E�p =
√

�p 2 + M2
p |�p = �p0

and

p0 =
√

(MY + MK+ − Mp)(MY + MK+ + 3Mp)/2 is the
relative 3-momentum of the colliding protons near thresh-
old, gpYK+ and gπNN are the pseudoscalar meson-baryon-
baryon coupling constants [1,2]. Then, Mp, MY and MK+

are masses of the proton, the hyperon and the K+-meson.
The appearance of the π-meson mass Mπ testifies the cal-
culation of the effective coupling constant CpYK+ in the
one-pion exchange approximation. As has been shown in
ref. [1] the accuracy of this approximation makes up a few
percent.

According to relativistically covariant partial-wave
analysis developed by Anisovich et al. [3] the spin triplet
state, S = 1, of the pY-pair is splitted into the 3P0 state,
described by the the second term in (1.1), and the 3S1 and
3D1 states mixed in the third term of (1.1).
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In ref. [1] the cross-sections for the reactions
p + p → p + Λ + K+ and p + p → p + Σ0 + K+, calcu-
lated for unpolarized particles, fit experimental data [3–6]
with accuracy better than 11% for excess of energy ε, de-
fined by ε =

√
s − Mp − MY − MK+ [1], ranging values

from the region 0.68MeV ≤ ε ≤ 138MeV [1].
In this paper, we calculate the cross-sections for the

reactions p + p → p + Y + K+, where Y = Λ0 or Σ0, near
thresholds in dependence on polarizations of baryons. We
analyse the contributions of the pY-pair produced in the
1S0, 3P0, 3S1 and 3D1 states. We show that the pY-pair
can be created only in the spin singlet 1S0 and spin triplet
3S1 states. Therewith, a production of a polarized strange
baryon relative to polarizations of colliding protons comes
about only for the spin triplet 3S1 state of the pY-pair.

The paper is organized as follows. In sect. 2 the pro-
jection operators introduced by Anisovich et al. [3] for the
projection of the wave function of a nucleon-nucleon pair
onto the 3S1 and 3D1 states are generalized for the case
of non-equal masses of coupled baryons. In sect. 3 we cal-
culate the amplitude of the reaction p + p → p + Y + K+.
We show that near threshold the pY-pair can be produced
only in the spin singlet 1S0 and spin triplet 3S1 states.
This corresponds the colliding protons coupled in the 3P0

and 3P1 states, respectively. In sect. 4 we calculate the
cross-sections for pp reactions p + p → p + Λ0 + K+ and
p + p → p + Σ0 + K+ in dependence on polarizations of
colliding protons and strange baryons Λ0 and Σ0. In the
conclusion we discuss the obtained results.

2 Partial-wave decomposition of the effective
vertex of the transition p + p → p + Y + K+

The calculation of the amplitude of the reaction p + p → p
+ Y + K+, we start with the decomposition of the effective
vertex of the transition p + p → p + Y + K+, described
by the effective Lagrangian (1.1), into the interactions for
which the pY-pair couples to the initial protons and the
K+-meson in the states with certain orbital momenta. For
this aim it is convenient to pass into momentum represen-
tation. In momentum representation the effective vertex
described by the effective Lagrangian (1.1) reads [1]

M(pp → pYK+) = i
1
2

CpYK+

×
{[

ū
(
− �qpY− 1

2
�pK, αp

)
γ5uc

(
�qpY− 1

2
�pK, αY

)]
× [ūc(−�p, α2)u(�p, α1)]

+
[
ū
(
− �qpY− 1

2
�pK, αp

)
uc
(
�qpY− 1

2
�pK, αY

)]
× [ūc(−�p, α2)γ5u(�p, α1)

]
+
[
ū
(
− �qpY− 1

2
�pK, αp

)
γµuc

(
�qpY− 1

2
�pK, αY

)]
× [ūc(−�p, α2)γµγ5u(�p, α1)

]}
, (2.1)

According to classification given by Anisovich et al. [3] the
first, second and third terms in the r.h.s. of (2.1) describe

the contribution of the pY-pair coupled in the 1S0, 3P0

and a mixture of 3S1 and 3P1 states, respectively. In the
low-energy limit there survive only the first and the third
terms of (2.1). Indeed, the wave function of the pY-pair in
the 3P0 state is proportional to a relative 3-momentum of
the pY-pair and vanishes in the low-energy limit. There-
fore, near threshold of the reaction p + p → p + Y + K+,
the second term in (2.1) can be dropped out. This gives

M(pp → pYK+) = i
1
2

CpYK+

×
{[

ū
(
− �qpY− 1

2
�pK, αp

)
γ5uc

(
�qpY− 1

2
�pK, αY

)]
×
[
ūc(−�p, α2)u(�p, α1)

]
+
[
ū
(
− �qpY− 1

2
�pK, αp

)
γµuc

(
�qpY− 1

2
�pK, αY

)]
×
[
ūc(−�p, α2)γµγ5u(�p, α1)

]}
, (2.2)

For the decomposition of the wave function of the pY-pair
in the last term of (2.2) into the states 3S1 and 3D1 with
certain orbital momenta we introduce the notations: kY =
(EY, �qpY − 1

2 �pK) = (EY,�kY), kp = (Ep,−�qpY − 1
2 �pK) =

(Ep,�kp), P = kY + kp, k = 1
2 (kY − kp) and

γ⊥
µ = γµ − P̂

Pµ

P 2
, k⊥

µ = kµ − P · k
P 2

Pµ. (2.3)

The 4-vectors γ⊥
µ and k⊥

µ are orthogonal to Pµ: P · γ⊥ =
P · k⊥ = 0.

The baryon densities describing the pY-pair in the 3S1

and 3D1 states are defined by [3] (see also [7])

Ψµ(3S1;αp, αY) = [ū(kp, αp)Sµuc(kY, αY)],

Ψµ(3D1;αp, αY) = [ū(kp, αp)Dµuc(kY, αY)], (2.4)

where Sµ and Dµ are relativistically covariant operators of
the projection onto the 3S1 and 3D1 states, respectively:

Sµ =
1√
2

1√
P 2 − (MY − Mp)2

×
[
γ⊥

µ +
2

MY + Mp +
√

P 2
k⊥

µ

]
,

Dµ =
2√

P 2 − (MY − Mp)2

[
1
4

(
1 − (MY + Mp)2

P 2

)

×
(
1− (MY−Mp)2

P 2

)
γ⊥

µ − 1
P 2

(
1− (MY−Mp)2

P 2

)

×
(√

P 2 +
MY + Mp

2

)
k⊥

µ

]
. (2.5)

This is the generalization of the projection operators in-
troduced by Anisovich et al. (see (C.2-C.3) of ref. [3])
for non-equal masses of coupled baryons. In the center-
of-mass frame of the pY-pair the baryon densities (2.4)
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1

3

∫
tr{Lµ(k̂p + Mp)Lµ(−k̂Y + MY)} (2π)4δ(4)(P − kp − kY)

d3kp

(2π)32Ep

d3kY

(2π)32EY
=




1

8π

(
1 − (MY − Mp)2

P 2

)1/2(
1 − (MY + Mp)2

P 2

)1/2

, Lµ = Sµ,

1

8π

(
1 − (MY − Mp)2

P 2

)5/2(
1 − (MY + Mp)2

P 2

)5/2

, Lµ = Dµ.

(2.9)

are equal to

Ψ0(3S1;αp, αY)= [ū(kp, αp)S0u
c(kY, αY)]=0,

�Ψ(3S1;αp, αY)= [ū(kp, αp)�Suc(kY, αY)]=
1√
2
ϕ†

p(αp)�σϕY(αY),

Ψ0(3D1;αp, αY)= [ū(kp, αp)D0u
c(kY, αY)]=0,

�Ψ(3D1;αp, αY)= [ū(kp, αp) �Duc(kY, αY)]=

−v2ϕ†
p(αp)

(
3(�σ ·�n)�n−�σ

2

)
ϕY(αY), (2.6)

where �n = �p/|�p | is a unit vector of a relative momentum
�p and v amounts to

v =

√√√√(1 − (MY − Mp)2

P 2

)(
1 − (MY + Mp)2

P 2

)
. (2.7)

Hence, the formulas (2.6) demonstrate that the baryon
densities (2.4) describe the pY-pair in the S- and D-wave
states with a total spin S = 1 and a total momentum
J = 1. The baryon densities (2.6) are normalized by [7]

1
3

∑
αp=±1/2

∑
αY=±1/2

�Ψ †(3S1;αp, αY)

· �Ψ(3S1;αp, αY) = 1,

1
3

∑
αp=±1/2

∑
αY=±1/2

�Ψ †(3D1;αp, αY)

· �Ψ(3D1;αp, αY) = v 4, (2.8)

where v is given by (2.7). The factor 3 in the denominator
of the l.h.s. of eq. (2.8) describes the number of the states
of the pY-pair with a total momentum J = 1, 2J +1 = 3.

For the analysis of nuclear reactions it is convenient
to remind that the normalization (2.8) corresponds to the
normalization in the phase volume of the pY-pair [3] (see
also [7]):

see eq. (2.9) above.

Solving equations (2.5) with respect to γ⊥
µ we express γ⊥

µ

in terms of the projection operators Sµ and Dµ

γ⊥
µ =

2
√

2
3

(√
P 2+

MY+Mp

2

)√
1− (MY−Mp)2

P 2
Sµ

+
2
3

(P 2)3/2

(
√

P 2+MY+Mp)
√

P 2−(MY−Mp)2
Dµ. (2.10)

In the limit of equal masses MY = Mp = MN the r.h.s. of
(2.10) reduces itself to the form of eq. (2.16) of ref. [7].

Near threshold of the reaction p + p → p + Y + K+

we can define
√

P 2 in terms of an excess of energy
ε:

√
P 2 = ε + MY + Mp. Hence, near threshold of

the reaction p + p → p + Y + K+ the Dirac matrix γ⊥
µ

expanded into the projection operators Sµ and Dµ can
be approximated by

γ⊥
µ = 2

√
2
√

MYMp Sµ +
(MY + Mp)2

6
√

MYMp

Dµ. (2.11)

Since in the low-energy limit the parameter v is of order
O(ε), v ∼ ε/(MY + Mp), the contribution of the 3D1

states can be neglected near threshold of the reaction
p + p → p + Y + K+.

Substituting (2.11) in (2.2) and keeping only leading
terms in the low-energy limit we arrive at the effective
vertex of the transition p + p → p + Y + K+ given by

M(pp → pYK+) = i
1
2

CpYK+

×
{

[ū(�kp, αp)γ5uc(�kY, αY)][ūc(−�p, α2)u(�p, α1)]

−2
√

2
√

MYMp[ū(�kp, αp

)
�S uc(�kY, αY)]

·[ūc(−�p, α2)�γ γ5u(�p, α1)]
}

. (2.12)

We have taken into account the fact that near thresh-
old, when we are able to neglect a 3-momentum of the
K+-meson, the pY-pair is practically in the center-of-mass
frame. This implies that only spatial components of the
projection operator Sµ are material.

The effective vertex (2.12) evidences that near thresh-
old of the reaction p + p → p + Y + K+ the pY-pair can
be produced only in the spin singlet 1S0 and spin triplet
3S1 states. This corresponds to colliding protons coupled
in the 3P0 and 3P1 states, respectively.

3 Amplitude of the reaction
p + p → p + Y + K+

For the calculation of the amplitude of the reaction
p + p → p + Y + K+ we would follow ref. [1] and take into
account strong pp interaction in the initial state, i.e. pp
rescattering p + p → p + p. As has been shown in ref. [1]
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the effective pp interaction responsible for the transition
p + p → p + p can be represented in the local form

Lpp→pp(x) =
1
8

Cpp

{
[p̄(x)pc(x)][p̄c(x)p(x)]

+[p̄(x)γ5pc(x)][p̄c(x)γ5p(x)]

+[p̄(x)γµγ5pc(x)][p̄c(x)γµγ5p(x)]
}

, (3.1)

where the coupling constant Cpp is equal to [1]

Cpp =
g2

πNN

4�p 2
ln

(
1 +

4�p 2

M2
π

)
. (3.2)

By summing up infinite series of one-proton loop diagrams
the vertices of which are defined by the effective interac-
tion eq. (3.1) we arrive at the expressions [1,8]

[ūc(−�p, α2)u(�p, α1)] →
[ūc(−�p, α2)u(�p, α1)]

1 +
Cpp

64π2

∫
d4k

π2i
tr

{
1

Mp − k̂

1

Mp − k̂ − Q̂

} ,

[ūc(−�p, α2)γiγ5u(�p, α1)] →
(D−1

pp (Q))ij [ūc(−�p, α2))γjγ
5u(�p, α1)],

Dij
pp(Q) = gji +

Cpp

64π2

×
∫

d4k

π2i
tr

{
γiγ5 1

Mp−k̂
γjγ5 1

Mp−k̂−Q̂

}
, (3.3)

where Latin indices run over i = 1, 2, 3 and Q =(
2
√

�p 2 + M2
p ,�0

)
.

After the evaluation of momentum integrals and
renormalization of wave functions of the protons [1,
8], we obtain the contributions of strong pp interac-
tion, pp rescattering, in the initial state of the reaction
p + p → p + Y + K+:

[ūc(−�p, α2)u(�p, α1)] →
[ūc(−�p, α2)u(�p, α1)]

1 +
Cpp(�p 2, Λ)

8π2

|�p |3
E�p

[
ln
(

E�p + |�p |
E�p − |�p |

)
+ π i

] =

[ūc(−�p, α2)u(�p, α1)] fpYK+

pp (3P0; |�p |) eiδ
pYK+

pp (3P0; |�p |),

[ūc(−�p, α2)�γ γ5u(�p, α1)] →
[ūc(−�p, α2))�γ γ5u(�p, α1)]

1 +
Cpp(�p 2, Λ)

8π2

|�p |3
E�p

[
ln
(

E�p + |�p |
E�p − |�p |

)
+ π i

] =

[ūc(−�p, α2)�γ γ5u(�p, α1)]

×fpYK+

pp (3P1; |�p |) eiδ
pYK+

pp (3P1; |�p |), (3.4)

where Cpp(�p 2, Λ) amounts to [1]

Cpp(�p 2, Λ) =
Cpp

1+
Cpp�p 2

4π2


ln

(
Λ

Mp
+

√
1+

Λ2

M2
p

)
− Λ√

M2
p +Λ2




. (3.5)

The appearance of the cut-off Λ is caused by non-trivial
�p-dependent logarithmically divergent contributions. The
cut-off Λ restricts from above 3-momenta of virtual proton
fluctuations and is equal to Λ = 1200MeV [1].

In our model the amplitudes of pp rescattering in the
3P0 and 3P1 states are equal near threshold of the reaction
p + p → p + Y + K+. Therefore, below we denote

fpYK+

pp (3P0; |�p |) eiδ
pYK+

pp (3P0; |�p |) =

fpYK+

pp (3P1; |�p |) eiδ
pYK+

pp (3P1; |�p |) =

fpYK+

pp (|�p |) eiδ
pYK+

pp (|�p |) =
1

1 +
Cpp(�p 2, Λ)

8π2

|�p |3
E�p

[
ln
(

E�p + |�p |
E�p − |�p |

)
+ π i

] . (3.6)

As has been shown in ref. [1] in our model the amplitude
of strong low-energy pY interaction in the final state can
be represented in Watson’s form for the final-state inter-
action [9] in terms of the scattering length apY and the
effective range rpY of low-energy elastic pY scattering:

fpY→pY(qpY) =
1

1 − 1
2

apYrpYq2
pY + i apYqpY

=

fpY(qpY) eiδpY(qpY). (3.7)

According to Balewski et al. [9] for the description of the
final pY interaction in the reaction p+p→p+Y+K+ we
would use average values for scattering lengths and effec-
tive ranges in the spin singlet 1S0 and spin triplet 3S1

states of the pY-pair: apY = −2.0 fm and rpY = 1.0 fm [9].
This assumes that the amplitudes of low-energy elastic
pY scattering in the spin singlet 1S0 and spin triplet 3S1

states are equal

fpY(1S0; qpY) eiδpY(1S0; qpY) =

fpY(3S1; qpY) eiδpY(3S1; qpY) =

fpY(qpY) eiδpY(qpY). (3.8)

In ref. [1] we have shown that this assumption agrees well
with experimental data [4–6,10].

Accounting for the Coulomb repulsion between the
daughter proton and the K+-meson we obtain the to-
tal amplitude of the reaction p + p → p + Y + K+ near
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threshold of the final state

M(pp → pYK+) =
i

2
CpYK+

×fpYK+

pp (|�p |) fpY(qpY) eiδ
pYK+

pp (|�p |) + iδpY(qpY)

×
√

MpK+

qpK+

2πα

e2παMpK+/qpK+ − 1

×{[ū(�kp, αp)γ5uc(�kY, αY)][ūc(−�p, α2)u(�p, α1)]

−2
√

2
√

MYMp[ū(�kp, αp

)
�S uc(�kY, αY)]

·[ūc(−�p, α2)�γ γ5u(�p, α1)]}, (3.9)

where the factor depending of the fine structure con-
stant α = 1/137 takes into account the Coulomb repul-
sion between the daughter proton and the K+-meson at
low relative 3-momenta qpK+ [9] (see also [8]), MpK+ =
MpMK+/(Mp + MK+) is a reduced mass of the pK+ sys-
tem.

4 Cross-sections for the reactions
p + p → p + Λ0 + K+ and
p + p → p + Σ0 + K+ with polarized baryons

The calculation of the cross-section for the reaction
p + p → p + Y + K+ we carry out in dependence on po-
larizations of strange baryon and colliding protons [11].
The polarization 4-vectors of coupled baryons, we define
as follows [12]:

ζµ
1 =

(
+

�p · �ζ 1

Mp
, �ζ 1 +

�p (�p · �ζ 1)
Mp(E�p + Mp)

)
,

ζµ
2 =

(
− �p · �ζ 2

Mp
, �ζ 2 +

�p (�p · �ζ 2)
Mp(E�p + Mp)

)
,

ζµ
Y = (0, �ζY), (4.1)

where �ζ i (i = 1, 2,Y) are polarization 3-vectors of baryons
normalized to unity �ζ 2

i = 1.
Introducing the polarization 4-vectors of baryons in a

standard way

∑
α1=±1/2

u(p1, α1)ū(p1, α1) = (p̂1 + Mp)

(
1 + γ5ζ̂1

2

)
,

∑
α2=±1/2

uc(p2, α2)ūc(p2, α2) = (p̂2 − Mp)

(
1 + γ5ζ̂2

2

)
,

∑
αY=±1/2

uc(kY, αY)ūc(kY, αY) = (k̂Y−MY)

(
1+γ5ζ̂Y

2

)
,

(4.2)

we calculate the squared amplitude (3.9), averaged and
summed over the states of colliding protons and final

baryons. The result reads

|M(pp → pYK+)|2 = C2
pΛK+ |fpYK+

pp (|�p |)|2|fpY(qpY)|2

×MpK+

qpK+

2πα

e2παMpK+/qpK+ − 1

× 4�p 2MpMY

(
1 +

1
3

�ζ1 · �ζ2 +
1
3

�n · (�ζ1 + �ζ2)(�n · �ζY)
)

=

×|M(pp → pYK+)|20

×
(

1 +
1
3

�ζ1 · �ζ2 +
1
3

�n · (�ζ1 + �ζ2)(�n · �ζY)
)

, (4.3)

where |M(pp → pYK+)|20 is a squared amplitude of
the reaction under consideration with unpolarized par-
ticles and �n = �p/|�p | is a unit vector along a relative
3-momentum of colliding protons.

If only one of the colliding protons is polarized, the
amplitude (4.3) reduces to a simpler form

|M(pp → pYK+)|2 = |M(pp → pYK+)|20

×
(

1 +
1
3

(�n · �ζ)(�n · �ζY)
)

, (4.4)

where �ζ is a polarization vector of the polarized proton in
the initial state.

Using (4.3), (4.4) and the results obtained in ref. [1]
we write down the cross-sections for the reactions
p + p → p + Λ0 + K+ and p + p → p + Σ0 + K+, when
i) colliding protons and a strange baryon are polarized,
�p + �p → p + �Y + K+, and ii) there are polarized only one
of the colliding protons and a strange baryon, �p + p →
p + �Y + K+ or p + �p → p + �Y + K+:

σ�p�p→p �Λ 0K+
(ε) = σpp→pΛ0K+

(ε)

×
(

1 +
1
3

�ζ1 · �ζ2 +
1
3

�n · (�ζ1 + �ζ2)(�n · �ζΛ0)
)

,

σ�p�p→p �Σ0K+
(ε) = σpp→pΣ0K+

(ε)

×
(

1 +
1
3

�ζ1 · �ζ2 +
1
3

�n · (�ζ1 + �ζ2)(�n · �ζΣ0)
)

. (4.5)

For reactions p+�p→p+ �Λ 0+K+ and p+�p→p+ �Σ0+K+

with one polarized proton in the initial state and a polar-
ized strange baryon we get

σp�p→p �Λ 0K+
(ε) = σpp→pΛ0K+

(ε)

×
(

1 +
1
3

(�n · �ζ)(�n · �ζΛ0)
)

,

σp�p→pΣ0K+
(ε) = σpp→pΣ0K+

(ε)

×
(

1 +
1
3

(�n · �ζ)(�n · �ζΣ0)
)

. (4.6)

The cross-sections for unpolarized baryons σpp→pΛ0K+
(ε)

and σpp→pΣ0K+
(ε) have been tabulated in ref. [1] for ex-

cess of energy ε ranging values from the region 0.68MeV ≤
ε ≤ 138MeV. Theoretical cross-sections fit experimental
data with accuracy better than 11%.
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5 Conclusion

We have shown that in our approach [1] to the
description of pp reactions p + p → p + Λ0 + K+ and
p + p → p + Σ0 + K+ near thresholds of the final states
pΛK+ and pΣ0K+, based on pp rescattering in the ini-
tial state with a dominant contribution of the one-pion
exchange and strong final-state interaction of daughter
hadrons, polarization properties of strange baryons can
be investigated with respect to polarizations of colliding
protons. We would like to accentuate that for the deriva-
tion of the effective Lagrangian (1.1) and the calculation
of the amplitude of pp rescattering in the initial state
we have used renormalizable pseudoscalar meson-baryon-
baryon couplings that always fit data well [13].

Near thresholds of the reactions p + p → p + Λ0 + K+

and p + p → p + Σ0 + K+ we predict production of pΛ0

and pΣ0 pairs only in the spin singlet 1S0 and spin
triplet 3S1 states. This result has been obtained by
means of relativistically covariant partial-wave analysis
worked out by Anisovich et al. for nucleon-nucleon scat-
tering [3]. In order to implement this analysis to reactions
p + p → p + Λ0 + K+ and p + p → p + Σ0 + K+ for the
description of wave functions of pΛ0 and pΣ0 pairs we
have generalized the projection operators introduced by
Anisovich et al. for nucleon-nucleon pairs onto the case
of baryon-baryon pairs with non-equal masses of coupled
baryons.

In our model production of a polarized strange baryon
can come about only for pΛ0 and pΣ0 pairs produced
in the spin triplet state 3S1. The more detailed predic-
tions for polarization of strange baryons can be obtained
from the theoretical cross-sections (4.5) and (4.6) in ac-
cord with specific experimental conditions of the experi-
mental analysis of the reactions p + p → p + Λ0 + K+ and
p + p → p + Σ0 + K+.

Now let us compare our results with the model-
independent analysis of polarization of strange baryons in
the reaction p + p → p + Y + K+ worked out by Rekalo
et al. [11]. According to ref. [11] the most general form
of the cross-section for the reaction �p + �p → p + Y + K+

with polarized colliding protons and unpolarized strange
baryon should read

σ�p�p→pYK+
(ε) = σpp→pYK+

(ε)

×
(
1 + A1

�ζ1 · �ζ2 + A2 (�n · �ζ1)(�n · �ζ2)
)

, (5.1)

where Ai (i = 1, 2) are real functions obeying the con-
straint

3A1 + A2 = 1. (5.2)

When matching the expression (5.1) with ours (4.5) we
find that

A1 =
1
3

, A2 = 0. (5.3)

This agrees completely with Rekalo’s prediction (5.2).
Unlike our results Rekalo et al. did not give an ex-

plicit expression of the cross-section for the reaction

p + p → p + Y + K+ with polarized colliding protons and
strange baryon. Therefore, we cannot compare our the-
oretical cross-sections (4.5) and (4.6) with analogous
expressions which could be obtained within a model-
independent approach [11].

However, following general properties of strong inter-
actions and parity invariance, in particular, Rekalo et al.
have predicted a dynamical polarization vector �PY of a
strange baryon in terms of a polarization vector of one of
the colliding protons �ζ (see eq. (10) of ref. [11]). In our
case the dynamical polarization vector �PY is defined by

�PY = −2
3

�ζ +
4
3

�n (�n · �ζ ). (5.4)

This result can be verified experimentally1.
The absence in our cross-sections (4.5) of the terms �ζY ·

(�ζ1×�ζ2), (�n·�ζY)(�n·(�ζ1×�ζ2)) and so testifies that in our ap-
proach polarization observables of strange baryons defin-
ing the cross-section for the reaction p + p → p + Y + K+

are even under time reversal, T -even polarization observ-
ables [11]. According to Rekalo’s model-independent anal-
ysis this assumes the relation between phases of ampli-
tudes of pp and pY scattering

δpYK+

pp (3P0; |�p |) + δpY(1S0; qpY) =

δpYK+

pp (3P1; |�p |) + δpY(3S1; qpY), (5.5)

where δpYK+

pp (3P0; |�p |) and δpYK+

pp (3P1; |�p |) are the phases
of amplitudes of strong pp rescattering in the 3P0 and 3P1

states, respectively, and δpY(1S0; qpY) and δpY(3S1; qpY)
are the phases of low-energy elastic pY scattering in
the spin singlet 1S0 and spin triplet 3S1 states, respec-
tively. Since scattering lengths and effective ranges of elas-
tic pY scattering have been set equal this implies that
δpY(1S0; qpY) = δpY(3S1; qpY). Substituting this relation
into (5.5), we obtain the constraint

δpYK+

pp (3P0; |�p |) = δpYK+

pp (3P1; |�p |). (5.6)

Hence, any experimental measurement of the cross-section
for the reaction p + p → p + Y + K+ with non-vanishing
contributions of T -odd polarization observables like �ζY ·
(�ζ1 × �ζ2) should evidence a violation of constraints (5.5)
and (5.6). The former might mean that either scattering
lengths and effective ranges of low-energy elastic pY scat-
tering are not really equal for the spin singlet 1S0 and
spin triplet 3S1 states or, in reality, amplitudes of strong
pp rescattering in the 3P0 and 3P1 states of colliding pro-
tons differ themselves near threshold of the reaction p +
p → p + Y + K+.

We are grateful to Prof. M.P. Rekalo for helpful discussions.

1 The dynamical polarization vector �PY can be related to
the polarization vector �ζY as follows �PY = wpp→pYK+ �ζY,
where wpp→pYK+ is a probability of the production of a strange

baryon Y in the reaction p + p → p + Y + K+.
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